A NEW METHOD FOR THE PREPARATION OF CARBOXYL-LABELLED ALIPHATIC CARBOXYLIC ACIDS

A. SZABOLCS, J. SZAMMER^{*} and L. NOSZKÓ^ª

Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest

(Received in the UK 23 May 1974; *Accepted Jorpublication 29 May 1974)*

Abstract-The exchange reaction of carboxyl groups with labelled carbon dioxide has been investigated and shown to provide an excellent method for the preparation of labelled aliphatic carboxylic acids.

It is known¹⁻³ that an exchange reaction of carboxylate groups (Fig 1) occurs during the thermal decomposition of mixtures of aliphatic carboxylic acid

$$
R^{-1}^{\bullet} \text{COOM} \longleftrightarrow R\text{-COOM}
$$

$$
R^{\bullet} \text{COOM} \longleftarrow R^{\bullet} \text{-}^{\bullet} \text{COOM}
$$

Fig 1

salts. The rate of exchange depends chiefly on the cation applied in the order $Li < Na < K⁴$. Studies⁵ of this exchange process led to the assumption of the mechanism shown in Fig 2

Fig 2

In this mechanism the postulated malonate-type intermediate of exchange is formed in the reaction of carbanions with carbon dioxide. Accordingly, we observed high radioactivity incorporation into the acids recovered when their potassium or sodium salts were heated in carbon- ${}^{14}\hat{C}$ dioxide atmosphere. This observation permitted the elaboration of a new method for the preparation of carboxylic-1-"C acids. For the preparative application of the exchange occuring between the carboxylate groups and carbon-"C dioxide (Fig 3) we determined the optimal conditions of the reaction in a number of salts. The experimental results are summarized in Table I.

R-COOM
$$
\frac{4\pi\sigma_2}{\cos 2}
$$
 R⁻¹⁴COOM
Fig 3

As can be seen from the data in many cases the exchange is very fast and equilibrium distribution of "C between the carboxylate group and carbon dioxide can be reached with a few percent decomposition of the salt. This difference in the reaction rates of thermal transformations of salts allows conversion of an aliphatic acid to the carboxyl labelled species with very simple apparatus and requires only a short time compared to the methods used earlier.⁶ Further advantage of the method is that the starting material is the corresponding non-radioactive carboxylic acid and that the residual carbon-¹⁴C dioxide can be easily recovered from the reaction mixture.

In accordance with the mechanism presented in Fig 2, the exchange reaction cannot be applied for labelling carboxylic acids with no α -hydroge content, nor can it be used for acid molecule containing substituents reactive to α -carbonions or carboxylic acid salts $(-NH₂, OH, halogen, etc).$ According to the above mechanism, it may be expected that by applying catalytic amounts of malonates, applicability of the system can be expanded and the radiochemical yield can be improved for a number of cases. Experiments into this topic are now in progress in our laboratories.

[&]quot;Present address: Institute for Applied Chemistry, Technical University, Budapest, Hungary.

	Temp	Time		Yield %	
Starting salt	°C	min	Chemical	Chemical	Radiochemical
Sodium					
1. Acetate	400	120	$CH7$ ¹⁴ COOH	85	70
2. Propionate	390	120	C_2H5 ¹⁴ COOH	96	83
3. Butyrate	420	60	$C_3H^{-14}COOH$	88	70
4. i-Butyrate	430	120	$(CH3)2CH-14COOH$	85	65
5. Cyclopentanone					
carboxylate	430	60	$(CH2)4CH-$ ¹⁴ COOH	91	55
6. Cyclohexane					
carboxylate	420	120	$(CH2)$,CH- $^{\prime}$ COOH	96	80
7. Phenylacetate	290	120	$CnHn-CHn-nCOOH$	88	76
Potassium					
8. Acetate	410	60	CHx ¹⁴ COOH	98	88
9. Propionate	400	60	C ₂ H ₋ "COOH	90	83
10. Butyrate	420	60	$C1H1$ ¹ COOH	85	75
11. i-Butvrate	440	120	$(CH3)x$ -CH _x -"COOH	78	61
12. i–Valerate	440	120	(CH ₃) ₂ CH ₂ CH ₋ "COOH	95	76
13. Caproate	400	60	$CH3(CH3)4$ ¹⁴ COOH	95	78
14. i-Caproate	420	120	$(CH3)2CH(CH3)2$ ¹⁴ COOH	90	70
15. Laurate	420	120	$CH3(CH2)10$ ¹ *COOH	95	75
16. Elaidinate	380	120	$CHn(CH2)r$ -CH	85	69
			$CH(CH)$ ^{\leftarrow} $COOH$		
17. Palmitate	340	120	$CH3(CH2)1$ ¹ COOH	96	76
18. Phenylacetate	280	120	$C_{\alpha}H_{\alpha}CH_{z^{-1}}^{\alpha}COOH$	91	80
19. β -Phenyl-					
propionate	380	60	$C_{6}H_{3}CH_{2}CH_{2}$ "COOH	85	70
20. p-Cl-phenyl-					
acetate	290	100	p-Cl-C.H.CH-- ¹⁴ COOH	81	74
21. Succinate	420	60	$(CH2)2$ ¹ COOH) ₂	73	58
22. Glutarate	440	60	$(CH3)3$ ¹ ⁴ COOH) ₂	80	52
23. Adipate	440	60	$(CH2)4$ ⁽¹ COOH) ₂	90	35
24. Pimelate	420	60	$(CH2)3(14COOH)$	86	60

Table I. Preparation of carboxyl-labelled carboxylic acids

EXPERIMENTAL

Na and K salts were prepared by neutralization of an aqueous soln (or suspension) of the acid with equimolar amount of NaOH or KOH. The soln was evaporated and the residue dried in vacuo at 200° for 2 h.

In all cases, shown in the Table, the starting mixture 1 ⁻CO₂ was: 10 mM $R-COOM + 1 M$ or 5 mM ¹⁴CO₂ (spec. act.: 1.88×10^{7} dpm/ $R - (COOM)₂ + 1$ mM mM).

Chemical yields were determined by isotope dilution method for an aliquot part of the aqueous salt soln.

Radioactive samples were dissolved in a dioxane scintillator and a Packard Tri-Carb scintillation spectrometer Model 574 was used to count the samples.

General procedure of preparation. In a tube "CO₂ was distilled to the salt with liquid nitrogen. It was sealed and placed in a metal bath and kept at an appropriate temp. The ¹⁴CO₂ pressure was about 4-5 atm at the reaction temp. The system was opened and ${}^{14}CO_2$ recovered in the

form of Ba¹⁴CO₁. For measurement of the radioactivity the salts were converted into a p -Br-phenacyl ester derivatives; in some cases the acids were prepared from the aqueous solution of salts (run 5-7, 15-24).

REFERENCES

- ¹M. F. Bühler, J. P. A. Castrillon and A. E. A. Mitta, Proc. U.N. Intern. Conf. Peaceful Uses Atomic Energy. 2nd Geneva, Vol. 20, p. 95 (1958)
- ²R. Nakai, M. Sugii and H. Nakao, J. Am. Chem. Soc. 81, 1003 (1959)
- ³L. Noszkó, J. Szammer, A. Szabolcs and L. Ötvös, Radiochem. Radioanal. Lett. 5. 265 (1970).
- ⁴L. Noszkó, A. Szabolcs and J. Szammer, Ibid. 6, 129 (1971)
- 'J. Szammer, A. Szabolcs and L. Noszkó, J. Lab. Compounds, in the press
- ⁶A. Murray, III, and D. L. Williams, Organic Syntheses with Isotopes. Part 1. Interscience. New York (1958)